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Preface 

The National Center for Atmospheric Research (NCAR) has developed a software suite that 
comprises their “Forecast Sensitivity to Observations” (FSO) package and is utilized in order to 
determine the impact of observations (spanning the surface and upper atmosphere) on forecasts 
produced from the Weather Research and Forecasting (WRF) model (version 3.4.1). FSO is 
composed of the Weather Research and Forecasting (Model)—Advanced Research WRF (WRF-
ARW), the WRF-ARW tangent-linear and adjoint models (jointly called WRFPLUS in the FSO 
paradigm), and the WRF Variational Data Assimilation (WRFDA) System. 

A study using FSO to discern the impact of observations on the WRF forecast is discussed. The 
area of concern is the southwestern United States with the time period analyzed being early 
February 2012. FSO uses a background error (BE) covariance matrix, and for this study, a new 
one is generated for this particular domain/timeframe. 

Global Forecast System (GFS) model data acquired from the National Centers for Environmental 
Prediction (NCEP) provides the initial conditions for the WRF forecasts. 

Observations, including mesonet, meteorological terminal aviation routine weather report 
(METAR), surface aviation observation (SAO), radiometer, satellite (polar-orbiting), ship, 
aircraft communications addressing and reporting system (ACARS), rawinsonde observation 
(RAOB), and profiler are obtained from the Meteorological Assimilation Data Ingest System 
(MADIS) File Transfer Protocol (FTP) servers. MADIS is run operationally by the National 
Weather Service (NWS) (https://madis-data.nws.noaa.gov/). 
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1. Summary 

To ascertain which types of meteorological observations are most beneficial to the Weather 
Research and Forecasting (WRF) forecast used in Army applications, the National Center for 
Atmospheric Research (NCAR)’s Forecast Sensitivity to Observations (FSO) software suite is 
employed for a case study encompassing the southwestern United States. FSO is composed of 
Weather Research and Forecasting (Model)—Advanced Research WRF (WRF-ARW) (version 
3.4.1), the WRF-ARW tangent-linear and adjoint code (jointly called WRFPLUS in the FSO 
paradigm), and the WRF Variational Data Assimilation (WRFDA) System (1, 2, 3, 4). 

The Global Forecast System (GFS) data, acquired from the National Centers for Environmental 
Prediction (NCEP) provides the initial conditions for the WRF model. Observations for this 
study were obtained from the Meteorological Assimilation Data Ingest System (MADIS) data 
servers (5) maintained by the National Weather Service (NWS) and include surface data, such as 
mesonet and meteorological terminal aviation routine weather report (METAR), as well as data 
sets that characterize the upper regions of the atmosphere, including rawindondes, profiler, 
satellite, etc. 

FSO requires a WRF background error (BE) covariance; one can either employ the “global” BE 
covariance dataset supplied with the FSO package or derive their own, tuned to a particular 
domain of interest and time period. For this study, an initial FSO case was run for February 7, 
2012, 1200 Greenwich Mean Time (GMT), using the global BE covariance dataset. The test 
indicated that some of the observations had a deleterious effect on the forecast for this time, 
which provided the impetus to create scripts that allow the user to generate a 1-month (or longer) 
set of WRF forecasts to be used to develop a BE covariance tuned both temporally and 
geographically. The scripts run WRF Preprocessing System (WPS) and WRF, for a period and 
location of the user’s choosing, generating the T+12- and T+24-h forecasts for each day 
beginning at 0000 GMT and 1200 GMT. An NCAR script, “gen_be_wrapper.ksh”, then 
examines the differences between the 12- and 24-h forecasts, valid at the same time, to generate 
the BE covariance file. The WRFDA user’s guide recommends a WRF forecast dataset spanning 
at least 1 month (6); for this study, a period of approximately 5 weeks of WRF forecasts was 
used as input to the BE covariance calculation. For the following test periods, (1) 2012020112-
2012020200, (2) 2012020212-2012020300, (3) 2012020312-2012020400, the newly derived 
“local” covariance was employed. For case (1) only the ship observations impacted the WRF 
forecast positively, at 2012020200. For case (2) the only negative impact on the WRF forecast 
was noted at 2012020212, caused by aircraft reports (AIREP), while for case (3) the only 
negative impact was caused by ship reports at 2012020312. 
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2. Introduction 

For the purposes of Army weather applications, where the areal and temporal extent of available 
observations may be limited, it is imperative that modelers be able to determine which 
observations will most positively influence the forecast. To this end, this report illustrates a 
methodology, whereby a user can generate the long period (> = 1 month) of WRF forecasts 
required to create a BE covariance matrix that is representative of the area of interest both in 
time and space. An example of such a regionally and temporally tuned BE covariance matrix is 
employed in a case study outlined in this report to determine its efficacy when applied in FSO. 
The impact of MADIS observations on WRF forecasts over the period February 1–4, 2012, in 
the southwestern U.S. is discussed. 

NCAR’s FSO software suite consists of: 

1. WRF-ARW (version 3.4.1)–WRF-ARW is a weather forecasting model (also termed a 
“forward” model) intended for mesoscale size domains. 

2. WRF-ARW tangent-linear–The tangent-linear model (TLM) is derived from the forward 
model (WRF-ARW). A TLM provides a first-order approximation to the evolution of 
perturbations in a nonlinear forecast trajectory (7).  

3. WRF-ARW adjoint model–The WRF adjoint is the transpose of the WRF TLM. The 
transpose, in terms of code, will cause for example, an inner nest subroutine to become an 
outer nest subroutine. Thus, when the WRF adjoint is executed it runs in reverse. 

“Unlike a forward model which forecasts temperatures, winds, humidities and the like 
forward in time from a presumed known state, the adjoint propagates sensitivities with 
respect to those fields, as well as model parameters, backwards in time from a specified 
“final” sensitivity condition designed to test one’s hypothesis. The adjoint is the 
transpose of the “tangent linear model”, itself a forward integrated model linearized 
about the temporally and spatially varying state provided by the control simulation 
under scrutiny.” (8) 

4. WRFDA–This component enables combining observations with WRF model output with 
the goal to provide the truest snapshot of the atmosphere possible.  
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3. Background 

3.1 A General Cost Function 

WRFDA “. . . methods compute the analysis as the model state that minimizes a cost function 
measuring the fit to the observations and to the background, where the two terms are weighted 
by the inverses of the observation and background-error covariances, respectively.” (9) Note the 
cost function, exemplified by “J,” in equation 1. 𝐽[𝑥(𝑡0)] is a function of the state vector 𝑥(𝑡0), 
which represents the current estimate of the true atmospheric state. The goal is to determine the 
initial conditions of the model, 𝑥(𝑡0), so to minimize 𝐽. 𝐽[𝑥(𝑡0)] signifies a measure of the 
simultaneous gap between 𝑥(𝑡0) and two independent ‘snapshots’ of the atmosphere: 
observations (consisting of surface, upper air measurements, as well as satellite (e.g., POES) and 
a WRF model forecast, initialized with the GFS model (10). 

𝐽[𝑥(𝑡0)] = 1/2[𝑥(𝑡0) − 𝑥𝑏(𝑡0)]𝑇𝐵0−1[𝑥(𝑡0)− 𝑥𝑏(𝑡0)] + 1/2∑ (𝑦𝑖 − 𝑦𝑖0)𝑇𝑂𝑖−1(𝑦𝑖 − 𝑦𝑖0)𝑛
𝑖=0 : (1) 

𝑥𝑏 = 𝑎 𝑝𝑟𝑖𝑜𝑟𝑖 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑓𝑖𝑒𝑙𝑑, 

𝐵0 = 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑒𝑟𝑟𝑜𝑟 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥, 

𝑦𝑖0 = 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡𝑖, 

𝑂𝑖 = 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥, 

𝑦𝑖 = 𝐻[𝑥(𝑡𝑖)] 𝑤ℎ𝑒𝑟𝑒 𝐻 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑡ℎ𝑒 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟, 

𝑥(𝑡𝑖) = 𝑀(𝑡𝑖, 𝑡0)𝑥(𝑡0),𝑤ℎ𝑒𝑟𝑒 𝑀 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑡ℎ𝑒 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 𝑚𝑜𝑑𝑒𝑙. 

Observation operators vary in their functionality depending on the observation type under 
consideration. For example, given that rawinsondes are direct measurements of model variables, 
simple interpolation of model variables to the observation locations is required. On the other 
hand, for Geostationary Orbiting Environmental Satellite (GOES) sounder data, not only is 
interpolation of model variables to measurement location required, but also radiative transfer 
codes must be executed in order to convert model variables into radiances (11). 

3.2 A WRF-Specific Cost Function 

For FSO, it is necessary to cast the cost function, “J,” in terms of WRF model variables, 

𝐽 = � 0.5[𝐶𝑢�𝑢𝑓 − 𝑢𝑎� ∗∗ 2 + 𝐶𝑣�𝑣𝑓 − 𝑣𝑎� ∗∗ 2 +  𝐶𝑇�𝑇𝑓 −  𝑇𝑎� ∗∗ 2 + 𝐶𝑞�𝑞𝑓 − 𝑞𝑎� ∗∗ 2
𝑖,𝑗,𝑘

+  𝐶𝑝�𝑝𝑓 − 𝑝𝑎� ∗∗ 2] ,  
 

 

(2) 
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where 

i, j represent particular grid points and k represents a model level 

u = the u-component of the wind, 

v = the v-component of the wind, 

T = temperature, 

q = mixing ratio, 

p = atmospheric pressure. 

Here, the subscript “a” refers to the analysis (i.e., the output from WRFDA), taken to be a true 
characterization of the atmospheric state, and the subscript “f” refers to the forecast (i.e., output 
from WRF-ARW) and 𝐶𝑢,𝐶𝑣,𝐶𝑇 ,𝐶𝑞,𝐶𝑝  are weighting functions that transform the errors of 
winds, temperature, humidity, and pressure into units of energy [𝐽𝑘𝑔−1]. 

The adjoint model starting condition is, for example, 

𝜕𝐽
𝜕𝑢𝑓

= 𝐶𝑢�𝑢𝑓 − 𝑢𝑎�,𝑎𝑡 𝑎𝑙𝑙 𝑔𝑟𝑖𝑑 𝑝𝑜𝑖𝑛𝑡𝑠 (𝑖, 𝑗,𝑘),𝑢𝑛𝑖𝑡𝑠 = 𝐽𝑘𝑔−1𝑚−1𝑠   (3) 

with the ultimate goal being the diagnosis of initial condition sensitivity; and next convert the 
gradients back into units of energy by combining the winds, temperature, and pressure 
sensitivities as follows: 

𝑆0 = ∑ [𝑖,𝑗,𝑘 𝐶𝑢−1 �
𝜕𝐽
𝜕𝑢0

�+ 𝐶𝑣−1 �
𝜕𝐽
𝜕𝑣0
� + 𝐶𝑇−1 �

𝜕𝐽
𝜕𝑇0
� + 𝐶𝑞−1 �

𝜕𝐽
𝜕𝑞0

� + 𝐶𝑝−1( 𝜕𝐽
𝜕𝑝0

)],  (4) 

where 𝐶𝑢−1,𝐶𝑣−1,𝐶𝑡−1,𝐶𝑞−1, and 𝐶𝑝−1  are inverses of the weighting functions, that transform the 
sensitivity gradients of winds, temperature, humidity, and pressure into units of energy [𝐽𝑘𝑔−1], 
accounting for grid volume size/mass (12). These are the units used for the plots in section 6 
illustrating observation impacts on the WRF forecast. 

3.3 Mathematical Derivation of TLM Code 

To illustrate the process of deriving WRF-ARW TLM code from WRF-ARW forward model 
code, an outline follows: 

1. Assume this initial equation is derived from a mesoscale forecast model: 

𝑦 = 𝑎 + 𝑏𝑥 + 𝑐𝑥2 + 𝑑𝑥3 + 𝑒𝑧1/2 .     (5) 

2. Take the differential: 

 𝑦′ = 𝑏𝑥′ + 2𝑐𝑥𝑥′ + 3𝑑𝑥2𝑥′ + 1/2𝑒𝑧−1/2𝑧′ .   (6)
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3. Combine constants and terms, to arrive at the forward code: 

𝑌 = 𝐴 + 𝐵𝑥 + 𝐶𝑥2 + 𝐷𝑥3 + 𝐸√𝑧 .     (7) 

4. And, finally, from this forward code, the tangent-linear code may be derived: 

𝑌 = 𝐵𝑥𝑇𝐿 + 2𝐶𝑥𝑥𝑇𝐿 + 3𝐷𝑥2𝑥𝑇𝐿 + 1/2𝐸𝑧−1/2𝑧𝑇𝐿 .    (8) 

3.4 Porting Forward Model Code to TLM Code 

Also note that logical tests in the forward model must be carried to the TLM using the active 
forward model variables (13) (see table 1). 

Table 1. Model variables: forward and TLM examples. 

Forward example: 
IF (T > 273.) THEN 
𝑄 = 𝑇2 
ELSE 
𝑄 = 2 ∗ 𝑇 
ENDIF 

TLM example: 
IF (T > 273.) THEN  !NOT T_TLM 
𝑄𝑇𝐿𝑀 = 2 ∗ 𝑇 ∗ 𝑇_𝑇𝐿𝑀 
ELSE 
𝑄𝑇𝐿𝑀 = 2 ∗ 𝑇_𝑇𝐿𝑀 
ENDIF 

 

4. Methodology 

The steps in the FSO process are as follows: 

1. Define a “reference,” which is a WRFDA forecast (that includes assimilation of a multitude 
of data types, including mesonet, rawinsonde observation [RAOB], satellite, etc., plus a 
background first guess, GFS) yielding a ‘best estimate’ of the ‘true state’ of the atmosphere 
at verification time. 

2. Use the adjoint of the WRF to obtain the gradient of the forecast error with respect to the 
initial state. 

3. Apply these steps to the initial conditions both before the analysis is carried out and 
afterwards. This allows for the determination of the sensitivity of the forecast error at final 
time relative to the WRF data assimilation at initial time. 

4. Use the adjoint of the WRFDA to compute the impact of each observation type on the 
forecast error reduction (1).
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4.1 Generating BE Covariance Matrix 

To facilitate the dynamic generation of the BE covariance, applicable to one’s domain/time 
period, the author wrote shell scripts which (1) generate the namelist files for the WRF 
Preprocessing System (WPS), (2) create the initial conditions needed for WRF, and (3) execute 
the T+12- and T+24-h forecasts for each day. The user supplies a time period and a domain 
center latitude and longitude. The 12- and 24-h forecasts used in generating the BE covariance 
cover a period of approximately five weeks. The grid dimensions utilized were 113 × 113 points 
with a grid resolution of 15.75 km and spanning 41 levels. Lastly, to generate the BE covariance 
using one’s set of WRF forecasts, an NCAR script is used within which one can set the grid size, 
start and stop times, whether or not recursive filtering is used, etc. 

4.2 Converting MADIS Data for Use in FSO 

Making the MADIS data ingestible by FSO is a two-step process: 

Step 1. The MADIS data is read and converted by NCAR-supplied code (author: Ruifang Li; 
see http://www.mmm.ucar.edu/sections/data-assimilation.php) that converts the data to 
“Little-R” format, which essentially is a relic of a data format used in an earlier 
mesoscale model 5th Generation Mesoscale Model (MM5). The author created a 
“MASTER” little-r file that is a concatenation of each observation type in date/time 
order. 

Step 2. This Little-R format data is subsequently ingested by an NCAR WRFDA process 
called “obsproc.” This code module not only reformats, but also performs quality 
control, such as checking for vertical consistency/superadiabatic conditions in a 
sounding. This results in a file called obs_(date).3DVAR, which may be used by FSO. 

4.3 Executing FSO 

Running FSO is a three-step process: 

Step 1: a. Run WRFDA for the initial time; this is where the observations are merged with 
the WRF-ARW forecast to provide the most accurate assessment of the 
atmosphere possible. 

b. Run the update boundary condition code—this is where the WRF lateral boundary 
conditions are updated to be consistent with the WRFDA analysis. 

Step 2: Run the WRF nonlinear and WRF adjoint code. 

Step 3. Run the adjoint of the data assimilation using Lanczos minimization; this yields the 
observation impact on the WRF-ARW forecast. 
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5. MADIS Data Distribution for This Study 

Figures 1–5 are data plots generated via NCAR Command Language (NCL) script, depicting the 
distribution of data points for one day (February 7, 2012) in this study, for these data types:  
(1) profiler, (2) Global Positioning System Precipitable Water (GPSPW), (3) soundings, (4) ship 
reports, and (5) METAR (surface) reports. The data used for this study was obtained from 
MADIS and is in netCDF format. 

 

Figure 1. Distribution of profiler reporting sites, February 7, 2012. 

 

Figure 2. Distribution of Global Positioning System (GPS) 
derived Precipitable Water reporting sites. 
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Figure 3. Sounding (balloon) sites. 

 

Figure 4. Ship reports distribution. 
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Figure 5. METAR (surface reports) distribution. 

 

6. FSO Case Study Results 

An initial FSO case was run for February 7, 2012 encompassing the geographical area seen in 
figures 1–5. The NCEP global BE covariance was used and the results indicated that the 
observations were not making the positive impact expected. For this case, the “CV3 be.dat” file, 
representing BE covariance was used. According to Chapter 6 of the NCAR WRFVAR User’s 
Manual: 

“CV3 is the NCEP background error covariance (and) is estimated in grid space by what 
has become known as the NMC method. The statistics are estimated with the differences 
of 24- and 48-hour GFS forecasts with T170 resolution valid at the same time for 357 
cases distributed over a period of one year. Both the amplitudes and the scales of the 
background error have to be tuned to represent the forecast error in the guess fields.” (14)  

It is not clear whether the use of this ‘generic’ global BE covariance matrix attributed to the 
issues previously described. A large number of test cases comparing the use of the global BE 
versus a “local” BE would be required to distinguish that. Nonetheless, the author created shell 
scripts as a means of generating a BE covariance dataset tuned for the area of interest and 
timeframe of this study. When supplied with start/stop date/time values and a domain 
centerpoint, the scripts generate WRF output files for that period, containing the T+12-h and  
T+24-h forecasts for each day starting at 0000 GMT and 1200 GMT. These forecast datasets 
then serve as input to the NCAR “gen_be” utility. This utility examines the differences between 
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the 12- and 24-hour forecasts valid at the same time. With this new application, a user will be 
able to generate a BE covariance tuned to their particular domain. 

Figures 6–21 depict what effect the observations had on the WRF-ARW forecast. Negative 
values (units are J/kg), indicate a positive impact on the forecast, i.e., they reduced forecast error. 
Average impacts over the whole forecast period, 2012020212–2012020400 are displayed, as 
well as time-series plots for a given observation type. Also, for soundings, vertical impact is 
illustrated. 

 

Figure 6. A depiction of the impacts of various components of the observations on the 
WRF-ARW forecast for the period February 2–4, 2012. A negative forecast 
error contribution value indicates the observation reduced forecast error. 
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Figure 7. The impacts of various observation types on the WRF-ARW 
forecast. METAR and airline reports have the greatest impact. 

 

Figure 8. A time series depicting the impact of balloon soundings 
on the WRF-ARW forecast between February 2–4, 2012. 
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Figure 9. Satellite “atmospheric motion vectors” impact on the 
WRF-ARW forecast. 

 

Figure 10. Airline reports impact on the WRF-ARW forecast depicted 
in time series. The red block at 2012020212 indicates the 
reports reduced forecast accuracy for the first time period. 
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Figure 11. Time series depiction of the impact of surface reports 
on the WRF-ARW forecast. Note how the observations 
incrementally reduce forecast error as the forecast proceeds. 

 

Figure 12. Impact of profiler reports as the WRF-ARW forecast 
progresses. Note the impact is negligible for forecast 
periods 2 and 3. 
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Figure 13. Impact of ship reports on the forecast. The forecast is 
degraded by the ship reports in period 3. 

 

Figure 14. A depiction of the average impact over the whole 
WRF-ARW forecast period, and at all model levels 
for each observation type as a function of the number 
of observations taken. The surface portion of the soundings 
and pilot reports have the greatest impact. 
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Figure 15. Impact of each observation type averaged over the 
whole forecast period. METAR imparts the most 
improvement on the forecast. 

 

Figure 16. A depiction of the sounding’s u-component impact as a function of 
atmospheric height level for the period 2012020212–2012020400. 
Note the negative impact on the forecast at 300 mb. 
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Figure 17. Impact of sounding’s v-component on the WRF forecast as 
a function of height. Note the slight negative impact on the 
forecast at 500 and 300 mb. 

 

Figure 18. Impact of sounding temperature on WRF forecast as 
a function of height. Again, negative impact at 300 mb is noted. 

 



 

17 

 

Figure 19. The number of sounding temperature observations as 
a function of height. 

 

Figure 20. The impact of sounding mixing ratio on the WRF forecast 
as a function of height. 
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Figure 21. Depiction of the combined impact of soundings on the 
WRF forecast as a function of height. The greatest impact 
is noted at 700 mb. 

 

7. Conclusions 

The development of an automated means to generate the long-term span of WRF forecasts  
(> = 1 month) described in this report provides a means for generating a BE covariance matrix, 
required by FSO, that is representative of the time period and domain of interest. NCAR FSO is 
an excellent tool to determine the impact of MADIS observations on a WRF forecast and may 
help forecasters in the field, who may be limited in what observations are available, due to time 
or tactical constraints, etc. 

For this particular study, METAR, airline reports, and the surface portion of soundings 
(sonde_sfc) contributed most significantly to improving the WRF-ARW forecast compared to 
using GFS alone. There were forecast periods when observations degraded the forecast (e.g., 
airline reports at 2012020212 and ship reports at 2012020312) as well as instances where the 
observations had virtually no impact, for example, profiler at 2012020300 and 2012020312, but 
overall, observations clearly aided the WRF-ARW forecast. 

Of note is the fact that Kalnay et al. (15) show in their 2012 paper that one can deduce forecast 
sensitivity to observations using an ensemble Kalman filter (EnKF) algorithm, obviating the 
need to involve the adjoint of either the forecast model or the data assimilation scheme. Forecast 
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sensitivity to observations is a fertile study area and contrasting the Kalnay and FSO schemes 
may be profitable and would involve, in part, comparing the computational expense of running 
model adjoint(s) versus using an EnKF. 
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List of Symbols, Abbreviations and Acronyms 

ACARS aircraft communications addressing and reporting system 

AIREP  aircraft reports 

BE  background error 

EnKF  ensemble Kalman filter 

FSO  Forecast Sensitivity to Observations 

FTP  File Transfer Protocol 

GFS  Global Forecast System 

GMT  Greenwich Mean Time 

GOES  Geostationary Orbiting Environmental Satellite 

GPS  Global Positioning System 

GPSPW Global Positioning System Precipitable Water 

MADIS Meteorological Assimilation Data Ingest System 

METAR meteorological terminal aviation routine weather report 

MM5  5th Generation Mesoscale Model 

NCAR  National Center for Atmospheric Research 

NCEP  National Centers for Environmental Prediction 

NCL  NCAR Command Language 

NWS  National Weather Service 

RAOB  rawinsonde observation 

SAO  surface aviation observation 

TLM  tangent-linear model 

WPS  WRF Preprocessing System 

WRF  Weather Research and Forecasting 

WRF-ARW Weather Research and Forecasting (Model)—Advanced Research WRF 

WRFDA WRF Variational Data Assimilation (System) 

WRFPLUS Joint name for the WRF-ARW tangent-linear and adjoint models as referred to in 
the FSO paradigm 
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